题目内容
已知f′(x)是函数f(x)=lnx+| x |
| 2n |
| 1 |
| f′(an) |
(1)求数列{an}的通项公式;
(2)若bn=
| (2n-1)(2an-1) |
| an |
| lim |
| n→∞ |
分析:(1)先求出函数的导数,然后代入an+1=
,整理得到,
-
=
,然后求出
-
,即可求出通项公式.
(2)首先求出数列{bn}通项公式,然后表示是出sn和
sn,再做差求得sn进而求出极限.
| 1 |
| f′(an) |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| 2n |
| 1 |
| an |
| 1 |
| a1 |
(2)首先求出数列{bn}通项公式,然后表示是出sn和
| 1 |
| 2 |
解答:解(1)∵f(x)=lnx+
,∴f′(x)=
+
,
结合an+1=
,可得
+
=
,∴
-
=
,(3分)
因此
-
=(
-
)+(
-
)++(
-
)+(
-
)
=
+
++
+
=1-(
)n-1,
所以
=2-(
)n-1,即an=
,n∈N*.(6分)
(2)bn=(2n-1)•(2-
)=(2n-1)•(
)n-1,
Sn=1×1+3×
+5×(
)2++(2n-1)•(
)n-1,
Sn=1×
+3×(
)2++(2n-3)•(
)n-1+(2n-1)•(
)n,
∴
Sn=1+2[
+(
)2++(
)n-1-(2n-1)•(
)n,(9分)
Sn=2+4•
-(2n-1)(
)n-1=6-(
)n-3-(2n-1)•(
)n-1=6-
,
∴
(sn+bn)=
(6-
)=6.(12分)
| x |
| 2n |
| 1 |
| x |
| 1 |
| 2n |
结合an+1=
| 1 |
| f′(an) |
| 1 |
| an |
| 1 |
| 2n |
| 1 |
| an+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| 2n |
因此
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| an-1 |
| 1 |
| an-2 |
| 1 |
| a3 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a1 |
=
| 1 |
| 2n-1 |
| 1 |
| 2n-2 |
| 1 |
| 22 |
| 1 |
| 2 |
| 1 |
| 2 |
所以
| 1 |
| an |
| 1 |
| 2 |
| 2n-1 |
| 2n-1 |
(2)bn=(2n-1)•(2-
| 1 |
| an |
| 1 |
| 2 |
Sn=1×1+3×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
Sn=2+4•
| ||||
1-
|
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2n+3 |
| 2n-1 |
∴
| lim |
| n→∞ |
| lim |
| n→∞ |
| 4 |
| 2n-1 |
点评:本题考查了数列的求和、数列的极限等知识,对于等差数列和等比数列乘积形式的数列,一般采取错位相减的方法,属于中档题.
练习册系列答案
相关题目