题目内容

(本小题满分16分)

已知椭圆的离心率为,直线与椭圆相切.

(1)求椭圆的方程;

(2)设椭圆的左焦点为,右焦点为,直线过点且垂直与椭圆的长轴,动直线垂直于直线于点,线段的垂直平分线交于点,求点的轨迹的方程;

(3)若上不同的点,且,求实数的取值范围.

(本小题满分16分)

解:(1)因为,所以

      椭圆的方程可设为·····································2分

      与直线方程联立,消去,可得

      因为直线与椭圆相切,所以

      又因为,所以

      所以,椭圆的方程为;····································4分

 (2)由题意可知,

      又为点到直线的距离,·······································5分

        所以,点到直线的距离与到点的距离相等,即点的轨迹是以直线为准线,点为焦点的抛物线,···········································7分

      因为直线的方程为,点的坐标为

      所以,点的轨迹的方程为;································9分

 (3)由题意可知点坐标为·········································10分

      因为,所以

      即···································11分

      又因为

      所以

      因为,所以,····················13分

      方法一:整理可得:

              关于的方程有不为2的解,所以

                   ,且

              所以,

              解得的取值范围为.······················16分

      方法二:整理可得:

              当

                又因为,所以

              当

              所以,的取值范围为.····················16分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网