题目内容
如图,己知矩形ABCD的两个顶点A、D位于x轴上,另两个顶点B、C位于抛物线y=4-x2在x轴上方的曲线上,求这个矩形ABCD面积的最大值.
【答案】分析:先设点B的坐标,将面积S表达为变量的函数,再利用导数法求出函数的最大值.
解答:解:设点B(x,4-x2) (O<x≤2)…(1分)
则S=2x(4-x2)=2x3+8x…(3分)
∴S′=-6x2+8,∴S′=-6x2+8=0即
所以
时,S=2x3+8x取得最大值为
即矩形ABCD面积的最大值是…(14分)
点评:本题解题的关键是利用点在抛物线上设点,从而构建函数,由于函数是单峰函数,所以在导数为0处一定取最值.
解答:解:设点B(x,4-x2) (O<x≤2)…(1分)
则S=2x(4-x2)=2x3+8x…(3分)
∴S′=-6x2+8,∴S′=-6x2+8=0即
所以
即矩形ABCD面积的最大值是…(14分)
点评:本题解题的关键是利用点在抛物线上设点,从而构建函数,由于函数是单峰函数,所以在导数为0处一定取最值.
练习册系列答案
相关题目
己知在锐角ΔABC中,角
所对的边分别为
,且![]()
(I )求角
大小;
(II)当
时,求
的取值范围.
![]()
20.如图1,在平面内,
是
的矩形,
是正三角形,将
沿
折起,使
如图2,
为
的中点,设直线
过点
且垂直于矩形
所在平面,点
是直线
上的一个动点,且与点
位于平面
的同侧。
(1)求证:
平面
;
(2)设二面角
的平面角为
,若
,求线段
长的取值范围。
![]()
![]()
21.已知A,B是椭圆
的左,右顶点,
,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线
于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点
(1)求椭圆C的方程;
(2)求三角形MNT的面积的最大值
22. 已知函数
,
(Ⅰ)若
在
上存在最大值与最小值,且其最大值与最小值的和为
,试求
和
的值。
(Ⅱ)若
为奇函数:
(1)是否存在实数
,使得
在
为增函数,
为减函数,若存在,求出
的值,若不存在,请说明理由;
(2)如果当
时,都有
恒成立,试求
的取值范围.