题目内容

设a>0,函数f(x)=,b为常数.

(1)证明:函数f(x)的极大值点和极小值点各有一个;

(2)若函数f(x)的极大值为1,极小值为-1,试求a的值.

(1)证明见解析(2)a=2


解析:

(1)f′(x)=,

令f′(x)=0,得ax2+2bx-a=0                                                                      (*)

∵Δ=4b2+4a2>0,

∴方程(*)有两个不相等的实根,记为x1,x2(x1<x2),

则f′(x)=,

当x变化时,f′(x)与f(x)的变化情况如下表:

         

x

(-∞,x1)

x1

(x1 ,x2)

x2

(x2 ,+ ∞)

-

0

+

0

-

f (x)

极小植

极大值

?可见,f(x)的极大值点和极小值点各有一个.

(2)  由(1)得

两式相加,得a(x1+x2)+2b=x-x.

∵x1+x2=-,∴x-x=0,

即(x2+x1)(x2-x1)=0,

又x1<x2,∴x1+x2=0,从而b=0,

∴a(x2-1)=0,得x1=-1,x2=1,

由②得a=2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网