题目内容
选修4 - 1:几何证明选讲
如图,EF是⊙O的直径,AB∥EF,点M在EF上,AM、BM分别交⊙O于点C、D。设⊙O的半径是r,OM = m。
(Ⅰ)证明:;
(Ⅱ)若r = 3m,求的值。
如图,已知抛物线:,过焦点斜率大于零的直线交抛物线于、两点,且与其准线交于点.
(1)若线段的长为,求直线的方程;
(2)在上是否存在点,使得对任意直线,直线,,的斜率始终成等差数列,若存在求点的坐标;若不存在,请说明理由.
已知抛物线的准线与椭圆相切,则的值为( )
A. B.
C. D.
设,那么的值为( )
A. B.
C. D.-1
已知,则与的大小关系是( )
C. D.无法确定
已知数列{an}是公差为3的等差数列,数列{bn}是b1=1的等比数列,且.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)令cn= an bn,求数列{cn}的前n项和Tn.
在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立的( )
A.BC∥平面PDF B.DF⊥平面PAE
C.平面PDE⊥平面ABC D.平面PAE⊥平面ABC
已知数列{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=,anbn+1+bn+1=nbn.
(Ⅱ)令cn= an bn,求数列{cn}的前n项和Tn.
如图,在四棱锥中,侧面底面,,为中点,底面是直角梯形,,,,.
(1)求证:平面;
(2)求证:平面平面;
(3)设为棱上一点,,试确定的值使得二面角为.