题目内容

设关于x的不等式x(x-a-1)<0(a∈R)的解集为M,不等式x2-2x-3≤0的解集为N.
(Ⅰ)当a=1时,求集合M;
(Ⅱ)若M⊆N,求实数a的取值范围.
分析:(Ⅰ)当a=1时,由已知得一元二次不等式x(x-2)<0,解之即可得集合M;
(Ⅱ)由已知得N={x|-1≤x≤3}.下面对字母a进行分类讨论:①当a<-1时,②若a=-1时,③若a>-1时,分别表示出集合M,又N={x|-1≤x≤3},利用M⊆N,即可求得a的取值范围.
解答:解:(Ⅰ)当a=1时,由已知得x(x-2)<0.
解得0<x<2.
所以M={x|0<x<2}.…(3分)
(Ⅱ) 由已知得N={x|-1≤x≤3}.…(5分)
①当a<-1时,因为a+1<0,所以M={x|a+1<x<0}.
因为M⊆N,所以-1≤a+1<0,解得-2≤a<-1;…(8分)
②若a=-1时,M=∅,显然有M⊆N,所以a=-1成立;…(10分)
③若a>-1时,因为a+1>0,所以M={x|0<x<a+1}.
又N={x|-1≤x≤3},因为M⊆N,所以0<a+1≤3,解得-1<a≤2.…(12分)
综上所述,a的取值范围是[-2,2].…(13分)
点评:本小题主要考查一元二次不等式的解法、集合之间的包含关系、集合关系中的参数取值问题等基础知识,考查运算求解能力,考查分类讨论思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网