题目内容
已知平面向量
,
(
≠
,
≠0)满足|
|=1,(1)当|
-
|=|
+
|=2时,求|
|的值;(2)当
与
-
的夹角为120°时,求|
|的取值范围.
| α |
| β |
| α |
| β |
| β |
| α |
| α |
| β |
| α |
| β |
| β |
| β |
| α |
| β |
| β |
(1)|
-
|=|
+
|=2即|
-
|2=|
+
|2=4,化简得
∵|
|=1,∴|
|=
,即|
|的值为
(2)如图,设
=
,
=
,∴
=
-
,
由题,
与
-
的夹角为120°,因此,在△ABO中,∠OBA=60°,根据正弦定理,
=
,
∴|
|=
sinA,∵0°<A<120°∴0<sinA≤1,
即|
|的取值范围是(0,
].

| α |
| β |
| α |
| β |
| α |
| β |
| α |
| β |
|
∵|
| α |
| β |
| 3 |
| β |
| 3 |
(2)如图,设
| OA |
| α |
| OB |
| β |
| BA |
| α |
| β |
由题,
| β |
| α |
| β |
|
| ||
| sinA |
|
| ||
| sinB |
∴|
| β |
2
| ||
| 3 |
即|
| β |
2
| ||
| 3 |
练习册系列答案
相关题目