题目内容
已知
=(
,-1),
=(
,
),若
=
+(t2-3)•
,
=-k•
+t•
,若
⊥
,则实数k和t满足的一个关系式是______,
的最小值为______.
| e1 |
| 3 |
| e2 |
| 1 |
| 2 |
| ||
| 2 |
| a |
| e1 |
| e2 |
| b |
| e1 |
| e2 |
| a |
| b |
| k+t2 |
| t |
∵
=(
,-1),
=(
,
),
∴若
=
+(t2-3)•
=(
,-1)+(
t2-
,
t2-
)=(
t2-
+
,
t2-
-1),
=-k•
+t•
=(-
k,k)+(
t,
t)=(
t-
k,
t+k),
∵
⊥
,
∴
•
=(
t2-
+
)•(
t-
k)+(
t2-
-1)•(
t+k)
=
t3-
t+
t-
kt2+
k-3k+
t3-
t-
t+
kt2-
k-k
=t3-3t-4k=0,
∵t3-3t-4k=0,
∴k=
,
∴
=
=
t2+t-
=
(t+2)2-
,
∴
的最小值为-
.
故答案为:t3-3t-4k=0,-
.
| e1 |
| 3 |
| e2 |
| 1 |
| 2 |
| ||
| 2 |
∴若
| a |
| e1 |
| e2 |
| 3 |
| 1 |
| 2 |
| 3 |
| 2 |
| ||
| 2 |
3
| ||
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
| ||
| 2 |
3
| ||
| 2 |
| b |
| e1 |
| e2 |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| 3 |
| ||
| 2 |
∵
| a |
| b |
∴
| a |
| b |
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 3 |
| ||
| 2 |
3
| ||
| 2 |
| ||
| 2 |
=
| 1 |
| 4 |
| 3 |
| 4 |
| ||
| 2 |
| ||
| 2 |
3
| ||
| 2 |
| 3 |
| 4 |
| 9 |
| 4 |
| ||
| 2 |
| ||
| 2 |
3
| ||
| 2 |
=t3-3t-4k=0,
∵t3-3t-4k=0,
∴k=
| t3-3t |
| 4 |
∴
| k+t2 |
| t |
| ||
| t |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 4 |
| 7 |
| 4 |
∴
| k+t2 |
| t |
| 7 |
| 4 |
故答案为:t3-3t-4k=0,-
| 7 |
| 4 |
练习册系列答案
相关题目