题目内容

6.若f(x)=Asin(ωx+ϕ)(其中A>0,|φ|$<\frac{π}{2}$)的图象如图,为了得到$g(x)=sin(2x-\frac{π}{3})$的图象,则需将f(x)的图象(  )
A.向右平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{6}$个单位D.向左平移$\frac{π}{3}$个单位

分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:根据f(x)=Asin(ωx+ϕ)(其中A>0,|φ|$<\frac{π}{2}$)的图象,可得A=1,
 $\frac{1}{4}•\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$,∴ω=2.
再根据五点法作图可得2•$\frac{π}{3}$+φ=π,∴φ=$\frac{π}{3}$,∴f(x)=sin(2x+$\frac{π}{3}$).
故把f(x)=sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{3}$个单位,可得y=sin[2(x-$\frac{π}{3}$)+$\frac{π}{3}$]=sin(2x-$\frac{π}{3}$)=g(x)的图象,
故选:B.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网