题目内容
设f1(x)=
,fn+1(x)=f1[fn(x)],且an=
,则a2011=
| 2 |
| 1+x |
| fn(0)-1 |
| fn(0)+2 |
(
)2012
| 1 |
| 2 |
(
)2012
.| 1 |
| 2 |
分析:根据已知可得an+1=
=
=
=-
an,结合等比数列的通项公式可求an,进而可求
| fn+1(0)-1 |
| fn+1(0)+2 |
| ||
|
| 1-fn(0) |
| 4+2 fn(0) |
| 1 |
| 2 |
解答:解:∵f1(0)=2,a1=
=
∴fn+1(0)=f1[fn(0)]=
∴an+1=
=
=
=-
an
∴数列{an}是首项为
为首项,以-
为公比的等比数列
∴an=
•(-
)n-1
∴a2011=
•(-
)2010=(
)2012
故答案为:(
)2012
| f1(0)-1 |
| f1(0)+2 |
| 1 |
| 4 |
∴fn+1(0)=f1[fn(0)]=
| 2 |
| 1+fn(0) |
∴an+1=
| fn+1(0)-1 |
| fn+1(0)+2 |
| ||
|
| 1-fn(0) |
| 4+2 fn(0) |
| 1 |
| 2 |
∴数列{an}是首项为
| 1 |
| 4 |
| 1 |
| 2 |
∴an=
| 1 |
| 4 |
| 1 |
| 2 |
∴a2011=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
故答案为:(
| 1 |
| 2 |
点评:本题以函数为载体,考查数列的通项,考查等比数列的定义,等比数列的通项公式的应用,具有一定的综合性
练习册系列答案
相关题目