题目内容

设f1(x)=
2
1+x
,fn+1(x)=f1[fn(x)],且an=
fn(0)-1
fn(0)+2
,则a2011=
(
1
2
)
2012
(
1
2
)
2012
分析:根据已知可得an+1=
fn+1(0)-1
fn+1(0)+2
=
2
1+fn(0)
-1
2
1+fn(0)
+2
=
1-fn(0)
4+2 fn(0) 
=-
1
2
an
,结合等比数列的通项公式可求an,进而可求
解答:解:∵f1(0)=2,a1=
f1(0)-1
f1(0)+2
=
1
4

∴fn+1(0)=f1[fn(0)]=
2
1+fn(0)

an+1=
fn+1(0)-1
fn+1(0)+2
=
2
1+fn(0)
-1
2
1+fn(0)
+2
=
1-fn(0)
4+2 fn(0) 
=-
1
2
an

∴数列{an}是首项为
1
4
为首项,以-
1
2
为公比的等比数列
an=
1
4
•(-
1
2
)
n-1

a2011=
1
4
•(-
1
2
)
2010
=(
1
2
)
2012

故答案为:(
1
2
)
2012
点评:本题以函数为载体,考查数列的通项,考查等比数列的定义,等比数列的通项公式的应用,具有一定的综合性
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网