题目内容
已知下列两个命题:
p:?x∈R+,不等式x≥a
-1恒成立;q:y=loga(x2-ax+1)(a>0,a≠1)有最小值.若两个命题中有且只有一个是真命题,则实数a的取值范围是______.
p:?x∈R+,不等式x≥a
| x |
p:?x∈R+,不等式x≥a
-1恒成立;
即a≤
=
+
恒成立;
由于
+
的最小值为2,
故P为真命题时,a≤2
q:y=loga(x2-ax+1)(a>0,a≠1)有最小值.
表示以a为底的对数函数为增函数,且x2-ax+1>0恒成立
即
,解得1<a<2
故Q为真命题时,1<a<2
∵两个命题中有且只有一个是真命题,
当P真Q假时,a=2或a≤1
当P假Q真时,这样的a值不存在
故实数a的取值范围是a=2或a≤1
故答案为:a=2或a≤1
| x |
即a≤
| x+1 | ||
|
| x |
| 1 | ||
|
由于
| x |
| 1 | ||
|
故P为真命题时,a≤2
q:y=loga(x2-ax+1)(a>0,a≠1)有最小值.
表示以a为底的对数函数为增函数,且x2-ax+1>0恒成立
即
|
故Q为真命题时,1<a<2
∵两个命题中有且只有一个是真命题,
当P真Q假时,a=2或a≤1
当P假Q真时,这样的a值不存在
故实数a的取值范围是a=2或a≤1
故答案为:a=2或a≤1
练习册系列答案
相关题目