题目内容
已知f(x)=sin(x+
),x∈R,且sinα=
,α∈[
,π],求f(α)的值.
| π |
| 4 |
| 1 |
| 3 |
| π |
| 2 |
∵α∈[
,π],sinα=
,
∴cosα<0,cosα=-
f(α)=sin(α+
)=sinα•cos
+cosα•sin
=
×
-
×
=
| π |
| 2 |
| 1 |
| 3 |
∴cosα<0,cosα=-
2
| ||
| 3 |
f(α)=sin(α+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=
| 1 |
| 3 |
| ||
| 2 |
2
| ||
| 3 |
| ||
| 2 |
=
| ||
| 6 |
练习册系列答案
相关题目
已知f(x)=sin(2x-
)-2m在x∈[0,
]上有两个零点,则m的取值范围为( )
| π |
| 6 |
| π |
| 2 |
A、(
| ||||
B、[
| ||||
C、[
| ||||
D、(
|
已知f(x)=sin(x+
),g(x)=cos(x-
),则下列结论中正确的是( )
| π |
| 2 |
| π |
| 2 |
| A、函数y=f(x)•g(x)的周期为2 | ||
| B、函数y=f(x)•g(x)的最大值为1 | ||
C、将f(x)的图象向左平移
| ||
D、将f(x)的图象向右平移
|