题目内容
已知数列{an}的首项a1=
,an+1=
,n=1,2,….
(Ⅰ)求{an}的通项公式;
(Ⅱ)证明:对任意的x>0,an≥
-
(
-x),n=1,2,….
| 3 |
| 5 |
| 3an |
| 2an+1 |
(Ⅰ)求{an}的通项公式;
(Ⅱ)证明:对任意的x>0,an≥
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3n |
分析:(Ⅰ)由an+1=
,知
=
+
,故
-1=
(
-1),由此能够求出{an}的通项公式.(Ⅱ)由an=
>0,知
-
(
-x)=-
(
-an)2+an,由此能够证明对任意的x>0,an≥
-
(
-x),n=1,2,…..
| 3an |
| 2an+1 |
| 1 |
| an+1 |
| 2 |
| 3 |
| 1 |
| 3an |
| 1 |
| an+1 |
| 1 |
| 3 |
| 1 |
| an |
| 3n |
| 3 n+2 |
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3 n |
| 1 |
| an |
| 1 |
| 1+x |
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3n |
解答:(Ⅰ)解:∵an+1=
,
∴
=
+
,
∴
-1=
(
-1),
又
-1=
,
∴(
-1)是以
为首项,
为公比的等比数列.
∴
-1=
•
=
,
∴an=
.
(Ⅱ)证明:由(Ⅰ)知an=
>0,
-
(
-x)
=
-
(
+1-1-x)
=
-
[
-(1+x)]
=-
•
+
=-
(
-an)2+an
≤an,
∴对任意的x>0,an≥
-
(
-x),n=1,2,….
| 3an |
| 2an+1 |
∴
| 1 |
| an+1 |
| 2 |
| 3 |
| 1 |
| 3an |
∴
| 1 |
| an+1 |
| 1 |
| 3 |
| 1 |
| an |
又
| 1 |
| an |
| 2 |
| 3 |
∴(
| 1 |
| an |
| 2 |
| 3 |
| 1 |
| 3 |
∴
| 1 |
| an |
| 2 |
| 3 |
| 1 |
| 3 n-1 |
| 2 |
| 3 n |
∴an=
| 3n |
| 3n+2 |
(Ⅱ)证明:由(Ⅰ)知an=
| 3n |
| 3 n+2 |
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3 n |
=
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3 n |
=
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 1 |
| an |
=-
| 1 |
| an |
| 1 |
| (1+x)2 |
| 2 |
| 1+x |
=-
| 1 |
| an |
| 1 |
| 1+x |
≤an,
∴对任意的x>0,an≥
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3n |
点评:本题考查数列的递推公式的应用,具体涉及到数列的通项公式的求法和数列与不等式的应用.考查运算求解能力,推理论证能力;考查化归与转化思想.解题时要认真审题,仔细解答.
练习册系列答案
相关题目