题目内容
数列
中,
=1,![]()
(n=1,2,3…).
(Ⅰ)求
,
;
(Ⅱ)求数列
的前n项和
;
(Ⅲ)设
=log2
,存在数列{
}使得
= 1+ n(n+1)(n+2)
,试求数列{
}的前n项和.
解:(Ⅰ)∵
,
,∴
,∴
=
,
=
.
(Ⅱ)∵
=
=
,∴2
=
,
=2,
∴{
}是首项为
,公比为2的等比数列.
∴
=![]()
=
.
(Ⅲ)
=
(
)=
,
=n-2,
= n+1,
= n+2,
∵
=1+ n(n+1)(n+2)
,∴
= 1+ n(n+1)(n+2)
,
即
=
+ n
.
令A=
+
+…+
=
-
+
+…+![]()
=
-
.
令B=
+
+
+
+…+n
, ①
2B=
+
+
+…+
+n
, ②
②―①得:
B=n![]()
![]()
![]()
…
= n![]()
=(n-1)
+
,
∴
=
-
+(n-1)
+
= (n-1)
+
.
练习册系列答案
相关题目
数列{
}中,
=1,当n≥2时,
,则
的值是
[ ]
| A. |
B. |
C. |
D. |