题目内容
已知集合则=( )
(A) (B) (C) (D)
设函数,则的最小正周期
A.与b有关,且与c有关
B.与b有关,但与c无关
C.与b无关,且与c无关
D.与b无关,但与c有关
如图,在平面直角坐标系xOy中,F是椭圆 的右焦点,直线 与椭圆交于B,C两点,且 ,则该椭圆的离心率是 .
已知f(x)是定义在R上的偶函数,且在区间(-,0)上单调递增.若实数a满足,则a的取值范围是______.
已知双曲线(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形的ABCD的面积为2b,则双曲线的方程为( )
(A)
(B)
(C)
(D)
某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:
现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示生产甲、乙两种肥料的车皮数.
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.
i是虚数单位,复数满足,则的实部为_______.
已知双曲线 (a>0,b>0)的一条渐近线为2x+y=0,一个焦点为( ,0),则a=_______;b=_____________.
如图,四棱锥中,平面,,,,为线段上一点,,为的中点.
(Ⅰ)证明平面;
(Ⅱ)求四面体的体积.