题目内容
已知f(x)=sin2wx+
sin2wx-
(x∈R,w>0),若f(x)的最小正周期为2π.
(1)求f(x)的表达式和f(x)的单调递增区间;
(2)求f(x)在区间[-
,
]上的最大值和最小值.
| ||
| 2 |
| 1 |
| 2 |
(1)求f(x)的表达式和f(x)的单调递增区间;
(2)求f(x)在区间[-
| π |
| 6 |
| 5π |
| 6 |
(1)由已知f(x)=sin2wx+
sin2wx-
=
(1-cos2wx)+
sin2wx-
=
sin2wx-
cos2wx
=sin(2wx-
).
又由f(x)的周期为2π,则2π=
?2w=1?w=
,
?f(x)=sin(x-
),
2kπ-
≤x-
≤2kπ+
(k∈Z)?2kπ-
≤x≤2kπ+
(k∈Z),
即f(x)的单调递增区间为
[2kπ-
,2kπ+
](k∈Z).
(2)由x∈[-
,
]?-
≤x≤
?-
-
≤x-
≤
-
?-
≤x-
≤
?sin(-
)≤sin(x-
)≤sin
.∴-
≤sin(x-
)≤1.
故f(x)在区间[-
,
]的最大值和最小值分别为1和-
.
| ||
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
=
| ||
| 2 |
| 1 |
| 2 |
=sin(2wx-
| π |
| 6 |
又由f(x)的周期为2π,则2π=
| 2π |
| 2w |
| 1 |
| 2 |
?f(x)=sin(x-
| π |
| 6 |
2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| 2π |
| 3 |
即f(x)的单调递增区间为
[2kπ-
| π |
| 3 |
| 2π |
| 3 |
(2)由x∈[-
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
?-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
?sin(-
| π |
| 3 |
| π |
| 6 |
| π |
| 2 |
| ||
| 2 |
| π |
| 6 |
故f(x)在区间[-
| π |
| 6 |
| 5π |
| 6 |
| ||
| 2 |
练习册系列答案
相关题目
已知f(x)=sin(x+
),g(x)=cos(x-
),则f(x)的图象( )
| π |
| 2 |
| π |
| 2 |
| A、与g(x)的图象相同 | ||
| B、与g(x)的图象关于y轴对称 | ||
C、向左平移
| ||
D、向右平移
|