题目内容
在四棱锥P-ABCD中,底面ABCD是正方形,E为PD中点,若
=
,
=
,
=
,则
=( )
| PA |
| a |
| PB |
| b |
| PC |
| c |
| BE |
A、
| ||||||||||||
B、
| ||||||||||||
C、
| ||||||||||||
D、
|
分析:根据底面ABCD是正方形,E为PD中点,向量加法的平行四边形法则得到
=
(
+
),而
=
+
=(
-
)+(
-
),即可求得
的结果.
| BE |
| 1 |
| 2 |
| BP |
| BD |
| BD |
| BA |
| BC |
| PA |
| PB |
| PC |
| PB |
| BE |
解答:解:
=
(
+
)=-
+
(
+
)
=-
+
+
=-
+
(
-
)+
(
-
)
=-
+
+
=
-
+
.
故选C.
| BE |
| 1 |
| 2 |
| BP |
| BD |
| 1 |
| 2 |
| PB |
| 1 |
| 2 |
| BA |
| BC |
=-
| 1 |
| 2 |
| PB |
| 1 |
| 2 |
| BA |
| 1 |
| 2 |
| BC |
| 1 |
| 2 |
| PB |
| 1 |
| 2 |
| PA |
| PB |
| 1 |
| 2 |
| PC |
| PB |
=-
| 3 |
| 2 |
| PB |
| 1 |
| 2 |
| PA |
| 1 |
| 2 |
| PC |
| 1 |
| 2 |
| a |
| 3 |
| 2 |
| b |
| 1 |
| 2 |
| c |
故选C.
点评:此题是个基础题.考查向量在几何中的应用以及向量共线定理和空间向量基本定理,要用已知向量表示未知向量,把要求向量放在封闭图形中求解,体现了数形结合的思想.
练习册系列答案
相关题目