题目内容

已知数列{an},{bn}都是由正数组成的等比数列,公比分别为p、q,其中p>q,且p≠1,q≠1.设cn=an+bn,Sn为数列{cn}的前n项和.求
lim
n→∞
Sn
Sn-1
分析:先根据等比数列的通项公式分别求出an和bn,再根据等比数列的求和公式,分别求得Sn和Sn-1的表达式,进而可得
Sn
Sn-1
的表达式,分p>1和p<1对其进行求极限.
解答:解:Sn=
a1(pn-1)
p-1
+
b1(qn-1)
q-1
Sn
Sn-1
=
a1(q-1)(pn-1)+b1(p-1)(qn-1)
a1(q-1)(pn-1-1)+b1(p-1)(qn-1-1)

分两种情况讨论.(Ⅰ)p>1.
p>q>0,0<
q
p
<1
 
lim
n→∞
Sn
Sn-1
=
lim
n→∞
pn[a1(q-1)(1-
1
pn
)+b1(p-1)(
qn
pn
-
1
pn
)]
pn-1[a1(q-1)(1-
1
pn-1
)+b1(p-1)(
qn-1
pn-1
-
1
pn-1
)]

=p•
lim
n→∞
a1(q-1)(1-
1
pn
)+b1(p-1)[(
q
p
)
n
-
1
pn
]
a1(q-1)(1-
1
pn-1
)+b1(p-1)[(
q
p
)
n-1
-
1
pn-1
]
=p•
a1(q-1)
a1(q-1)

=p.
(Ⅱ)p<1.
∵0<q<p<1,
lim
n→∞
Sn
Sn-1
=
lim
n→∞
a1(q-1)(pn-1)+b1(p-1)(qn-1)
a1(q-1)(pn-1-1)+b1(p-1)(qn-1-1)
=
-a1(q-1)-b1(p-1)
-a1(q-1)-b1(p-1)
=1
点评:本小题主要考查等比数列的概念、数列极限的运算等基础知识,考查逻辑推理能力和运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网