题目内容
设坐标原点为O,抛物线y2=2x与过焦点的直线交于A,B两点,则| OA |
| OB |
分析:法一:根据抛物线的标准方程,求出焦点F(
,0 ),当AB的斜率不存在时,可得A(
,1),B(
,-1),求得
•
的值,结合填空题的特点,得出结论.
法二:由抛物线y2=2x与过其焦点(
,0)的直线方程联立,消去y整理成关于x的一元二次方程,设出A(x1,y1)、B(x2,y2)两点坐标,
•
=x1•x2+y1•y2,由韦达定理可以求得答案.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| OA |
| OB |
法二:由抛物线y2=2x与过其焦点(
| 1 |
| 2 |
| OA |
| OB |
解答:解:法一:抛物线y2=2x的焦点F(
,0 ),
当AB的斜率不存在时,可得A(
,1),B(
,-1),
∴
•
=(
,1)•(
,-1)=
-1=-
,
法二:由题意知,抛物线y2=2x的焦点坐标为(
,0),∴直线AB的方程为y=k(x-
),
由
得k2x2-(k2+2)x+
k2=0,设A(x1,y1),B(x2,y2),
则 x1+x2=
,x1•x2=
,y1•y2=k(x1-
)•k(x2-
)=k2[x1•x2-(x1+x2)+
]
∴
•
=x1•x2+y1•y2=
+k2(
-
+
) =-
,
故答案为:-
.
| 1 |
| 2 |
当AB的斜率不存在时,可得A(
| 1 |
| 2 |
| 1 |
| 2 |
∴
| OA |
| OB |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
法二:由题意知,抛物线y2=2x的焦点坐标为(
| 1 |
| 2 |
| 1 |
| 2 |
由
|
| 1 |
| 4 |
则 x1+x2=
| k2+ 2 |
| k2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
∴
| OA |
| OB |
| k2+2 |
| k2 |
| 1 |
| 4 |
| k2+2 |
| 4k2 |
| 1 |
| 4 |
| 3 |
| 4 |
故答案为:-
| 3 |
| 4 |
点评:本题考查抛物线的标准方程,以及简单性质的应用,两个向量的数量积公式,通过给变量取特殊值,检验所给的选项,是一种简单有效的方法.
练习册系列答案
相关题目