题目内容
已知数列{an},{bn}分别为等差、等比数列,且a1=l,d>0,a2=b2,a5=b3,a14=b4(n∈N*).(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)设Cn=an·bn,求数列{Cn}的前n项和.
解:(Ⅰ)由a2、a5、a14成等比数列,知(a1+d)(a1+13d)=(a1+4d)2,解得
2a1d=d2,由a1=1,且d>0得d=2;
∴ an=2n-1,(n∈N*),
又由b2=a2=3,b3=a5=9,a5=9,知bn=3n-1,(n∈N*);
(Ⅱ)由cn=an·bn=(2n-1)·3n-1,设Sn是{cn}的前n项和,则
Sn=c1+c2+…+cn
=1.30+3·31+5·32+…+(2n-1)·3n-1
3Sn=1·31+3·32+5·33+…+(2n-1)·3n
两式相减得:
-2Sn=1+2·31+2·32+…+2·3n-1-(2n-1)·3n
-2Sn=1-(2n-1)·3n+2×![]()
=(2-2n)·3n-2
故Sn=(n-1)3n+1(n∈N*).
练习册系列答案
相关题目