题目内容
设
是定义在
上的偶函数,对任意
,都有
,且当
时,
,若在区间
内关于
的方程
恰有3个不同的实数根,则
的取值范围是( )
| A. | B. | C. | D. |
B
∵对于任意的x∈R,都有f(x-2)=f(2+x),∴函数f(x)是一个周期函数,且T=4.
又∵当x∈[-2,0]时,f(x)=(
)x-1,且函数f(x)是定义在R上的偶函数,
若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0恰有3个不同的实数解,
则函数y=f(x)与y=-loga(x+2)在区间(-2,6]上有三个不同的交点,如下图所示:

又f(-2)=f(2)=3,则有 loga4<3,且loga8>3,解得:
<a<2,
故
的取值范围是
。
故选B.
又∵当x∈[-2,0]时,f(x)=(
若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0恰有3个不同的实数解,
则函数y=f(x)与y=-loga(x+2)在区间(-2,6]上有三个不同的交点,如下图所示:
又f(-2)=f(2)=3,则有 loga4<3,且loga8>3,解得:
故
故选B.
练习册系列答案
相关题目