题目内容
(本小题满分12分)
右图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到
的几何体,截面为ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3.
(1)设点O是AB的中点,证明:OC∥平面A1B1C1;
(2)求二面角B—AC—A1的大小;
(3)求此几何体的体积.

右图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到
的几何体,截面为ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3.
(1)设点O是AB的中点,证明:OC∥平面A1B1C1;
(2)求二面角B—AC—A1的大小;
(3)求此几何体的体积.
(1)OC∥平面A1B1C1
(2) 二面角的大小为
(3)
(2) 二面角的大小为
(3)
(1)证明:作
交
于
,连
.
则
.
因为
是
的中点,
所以
.
则
是平行四边形,因此有
.
平面
且
平面
,
则
面
.
(2)如图,过
作截面
面
,分别交
,
于
,
.
作
于
,连
.
因为
面
,所以
,则
平面
.
又因为
,
,
.
所以
,根据三垂线定理知
,所以
就是所求二面角的平面角.
因为
,所以
,故
,
即:所求二面角的大小为
.
(3)因为
,所以

所求几何体体积为
.
解法二:
(1)如图,以
为原点建立空间直角坐标系,
则
,
,
,因为
是
的中点,所以
,
.
易知,
是平面
的一个法向量.
因为
,
平面
,所以
平面
.
(2)
,
,
设
是平面
的一个法向量,则
则
得:
取
,
.
显然,
为平面
的一个法向量.
则
,
结合图形可知所求二面角为锐角.
所以二面角
的大小是
.
(3)同解法一.
因为
所以
则
则
(2)如图,过
作
因为
又因为
所以
因为
即:所求二面角的大小为
(3)因为
所求几何体体积为
解法二:
则
易知,
因为
(2)
设
则
取
显然,
则
结合图形可知所求二面角为锐角.
所以二面角
(3)同解法一.
练习册系列答案
相关题目