题目内容
已知x满足:2(log| 1 |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| x |
| 4 |
分析:由2(log
x)2+7log
x+3≤0可知
≤log2x≤3.再由f(x)=(log2
)•(log2
)可知f(x)=(log2x-
)2-
,利用二次函数的性质可以求出f(x)=(log2
)•(log2
)的最大值和最小值.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| x |
| 4 |
| 3 |
| 2 |
| 1 |
| 4 |
| x |
| 2 |
| x |
| 4 |
解答:解:∵2(log
x)2+7log
x+3≤0,∴
≤log2x≤3.
∵求f(x)=(log2
)•(log2
)=(log2x-1)(log2x-2)=(log2x)2-3log2x+2,
∴f(x)=(log2x-
)2-
,
∴f(x)max=f(x)
=2,f(x)min=f(x)
=-
.
故求f(x)=(log2
)•(log2
)的最大值是2,最小值是-
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵求f(x)=(log2
| x |
| 2 |
| x |
| 4 |
∴f(x)=(log2x-
| 3 |
| 2 |
| 1 |
| 4 |
∴f(x)max=f(x)
|
|
| 1 |
| 4 |
故求f(x)=(log2
| x |
| 2 |
| x |
| 4 |
| 1 |
| 4 |
点评:本类题是比较多见的常规题,先解不等式求出log2x的范围,再用二次函数的最值来求解f(x)=(log2
)•(log2
)的最大值和最小值.
| x |
| 2 |
| x |
| 4 |
练习册系列答案
相关题目