题目内容

已知向量
.
a
=(Asin
x
3
,Acos
x
3
),
.
b
=(cos
π
6
,sin
π
6
)函数f(x)=
.
a
.
b
(A>0,x∈R),且f(2π)=2.
(1)求函数y=f(x)的表达式;
(2)设α,β∈[0,
π
2
],f(3α+π)=
16
5
,f(3β+
2
)=-
20
13
,求cos(α+β)的值.
分析:(1)利用向量的数量积和两角和的正弦公式即可得出;
(2)利用诱导公式、平方关系、两角和的余弦公式即可得出.
解答:解:(1)依题意得f(x)=Asin
x
3
cos
π
3
+Acos
x
3
sin
π
6
=Asin(
x
3
+
π
6
)

∵f(2π)=2,∴Asin(
3
+
π
6
)=2
,∴Asin
6
=2
,解得A=4.
∴f(x)=4sin(
x
3
+
π
6
)

(2)由f(3α+π)=
16
5
,得4sin(
3α+π
3
+
π
6
)=
16
5
,即4sin(α+
π
2
)=
16
5

cosα=
4
5

又∵α∈[0,
π
2
]
,∴sinα=
1-(
4
5
)2
=
3
5

f(3β+
2
)=-
20
13
,得4sin(
3β+
2
3
+
π
6
)=-
20
13
,即sin(β+π)=-
5
13

sinβ=
5
13

又∵β∈[0,
π
2
]
,∴cosβ=
1-(
5
13
)2
=
12
13

∴cos(α+β)=cosαcosβ-sinαsinβ=
4
5
×
12
13
-
3
5
×
5
13
=
33
65
点评:熟练掌握向量的数量积运算和两角和的正弦公式、诱导公式、平方关系、两角和的余弦公式是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网