题目内容
9.已知等比数列{an}为递增数列,且a52=a10,2(an+an+2)=5an+1,则数列{an}的通项公式an=( )| A. | 2n | B. | 2n+1 | C. | ($\frac{1}{2}$)n | D. | ($\frac{1}{2}$)n+1 |
分析 设等比数列的首项为a1,公比为q,由题意列关于a1和q的方程组,求得首项和公比,代入等比数列的通项公式得答案.
解答 解:设等比数列的首项为a1,公比为q,
由a52=a10,2(an+an+2)=5an+1,得
$\left\{\begin{array}{l}{({a}_{1}{q}^{4})^{2}={a}_{1}{q}^{9}}\\{2({a}_{1}+{a}_{1}{q}^{2})=5{a}_{1}q}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{a}_{1}=\frac{1}{2}}\\{q=\frac{1}{2}}\end{array}\right.$(舍),$\left\{\begin{array}{l}{{a}_{1}=2}\\{q=2}\end{array}\right.$.
∴${a}_{n}=2•{2}^{n-1}={2}^{n}$.
故选:A.
点评 本题考查数列递推式,考查了等比数列的通项公式的求法,训练了方程组的解法,是基础的计算题.
练习册系列答案
相关题目
19.给出如下四个判断:
①?x0∈R.ex0≤0;③设a,b是实数,a>1,b>1是ab>1的充要条件;
②?x∈R+,2x>x2;④命题“若p则q”的逆否命题是若¬q,则¬p.
其中正确的判断个数是( )
①?x0∈R.ex0≤0;③设a,b是实数,a>1,b>1是ab>1的充要条件;
②?x∈R+,2x>x2;④命题“若p则q”的逆否命题是若¬q,则¬p.
其中正确的判断个数是( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
17.k>9是方程$\frac{x^2}{9-k}+\frac{y^2}{k-4}=1$表示双曲线的( )
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分又不必要条件 |
4.a,b∈R,且a+2b=2,则2a+4b的最小值是( )
| A. | 24 | B. | 16 | C. | 8 | D. | 4 |
14.已知2x=7y=k,$\frac{1}{x}$-$\frac{1}{y}$=4,则k的值是( )
| A. | ($\frac{2}{7}$)${\;}^{\frac{1}{4}}$ | B. | ($\frac{2}{7}$)4 | C. | 5${\;}^{\frac{1}{4}}$ | D. | ($\frac{7}{2}$)${\;}^{\frac{1}{4}}$ |
1.甲、乙两所学校高三年级分别有1200人,1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
乙校:
(1)计算x,y的值;
(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率;
(3)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.10的前提下认为两所学校的数学成绩有差异.
参考数据与公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
临界值表:
甲校:
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 3 | 4 | 8 | 15 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 15 | x | 3 | 2 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 1 | 2 | 8 | 9 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 10 | 10 | y | 3 |
(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率;
(3)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.10的前提下认为两所学校的数学成绩有差异.
| 甲校 | 乙校 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |
临界值表:
| P(K2≥k0) | 0.10 | 0.05 | 0.010 |
| k0 | 2.706 | 3.841 | 6.635 |