题目内容
若sin(180°+α)+cos(90°+α)=-a,则cos(270°-α)+2sin(360°-α)的值是( )A.-
B.-
C.
D.
【答案】分析:利用诱导公式可求得sinα=
,继而可求得cos(270°-α)+2sin(360°-α)的值.
解答:解:∵sin(180°+α)+cos(90°+α)=-sinα-sinα=-a,
∴sinα=
.
∴cos(270°-α)+2sin(360°-α)
=cos(180°+90°-α)+2sin(360°-α)
=-cos(90°-α)-2sinα
=-sinα-2sinα
=-3sinα=-3×
=-
a.
故选B.
点评:本题考查三角函数的诱导公式,求得sinα=
是关键,属于基础题.
解答:解:∵sin(180°+α)+cos(90°+α)=-sinα-sinα=-a,
∴sinα=
∴cos(270°-α)+2sin(360°-α)
=cos(180°+90°-α)+2sin(360°-α)
=-cos(90°-α)-2sinα
=-sinα-2sinα
=-3sinα=-3×
故选B.
点评:本题考查三角函数的诱导公式,求得sinα=
练习册系列答案
相关题目