题目内容
已知函数
在区间
上是减函数,那么
( )
A.有最小值
B.有最大值
C.有最小值
D. 有最大值![]()
【答案】
D
【解析】
试题分析:由f(x)在[-1,2]上是减函数,知f′(x)=3x2+2bx+c≤0,x∈[-1,2],
则f′(-1)=3-2b+c≤0,且f′(2)=12+4b+c≤0,⇒15+2b+2c≤0⇒b+c≤-
,故选D.
考点:本题主要考查了函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
点评:解决该试题的关键是先对函数f(x)求导,然后令导数在[-1,2]小于等于0即可求出b+c的关系,得到答案.
练习册系列答案
相关题目