题目内容

若f(x)是偶函数,且在(-∞,0)上是增函数,f(-3)=0,求
f(x)x
<0
的解集
(-3,0)∪(3,+∞)
(-3,0)∪(3,+∞)
分析:由题设知f(x)>0解集是{3,-3},
f(x)
x
<0等价于f(x)<0且x>0,或 f(x)>0且 x<0.由此能求出
f(x)
x
<0的解集.
解答:解:∵f(x)是偶函数,且在(-∞,0)上是增函数,f(-3)=0,
∴f(x)>0解集是{3,-3}
f(x)
x
<0等价于:
f(x)<0且x>0
或 f(x)>0且 x<0
f(x)
x
<0的解集为(-3,0)∪(3,+∞).
故答案为:(-3,0)∪(3,+∞).
点评:本题考查不等式的解法,解题时要认真审题,注意函数的单调性和奇偶性的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网