题目内容
若函数f(x)是定义在R上的偶函数,在(-∞,0)上是减函数,且f(2)=0,则使得f(x)<0的x的取值范围是 ( )
A.(-∞,2) B.(2,+∞) C.(-∞,-2)∪(2,+∞) D.(-2,2)
[考场错解] C f(-x)=f(x)<0=f(2).∴x>2或x<-2.
[专家把脉] 以上解答没有注意到偶函数在对称区间的单调性相反.错误地认为f(x)在[0,+∞]上仍是减函数,导致答案选错.
[对症下药] D ∵f(x)是偶函数,∴f(-x)=f(x)=f(|x|).∴f(x)<0.f(|x|)<f(2).又∵f(x)在(-∞,0)上是减函数,∴f(x)在[0,+∞]上是增函数,|x|<2
-2<x<2.选D.
练习册系列答案
相关题目