题目内容
若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q= ;前n项和Sn= .
2 2n+1-2
根据下列条件求椭圆的标准方程:
(1)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P作长轴的垂线恰好过椭圆的一个焦点;
(2)经过两点A(0,2)和B.
已知椭圆C:+=1(a>b>0)的离心率为,连接椭圆的四个顶点得到的四边形的面积为2.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程.
公比为2的等比数列{an}的各项都是正数,且a3a11=16,则a5等于( )
(A)1 (B)2 (C)4 (D)8
已知数列{an}满足3an+1+an=0,a2=-,则{an}的前10项和等于( )
(A)-6(1-3-10) (B) (1-310)
(C)3(1-3-10) (D)3(1+3-10)
(1)已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若数列{an}唯一,求a的值;
(2)是否存在两个等比数列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不为0的等差数列?若存在,求{an},{bn}的通项公式;若不存在,说明理由.
已知数列{an}满足:a1=1,a2=2,2an=an-1+an+1(n≥2,n∈N*),数列{bn}满足b1=2,anbn+1=2an+1bn.
(1)求数列{an}的通项an;
(2)求证:数列为等比数列,并求数列{bn}的通项公式.
设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求数列{an}的通项公式.
设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f等于( )
(A)- (B)- (C) (D)