题目内容

在△ABC,已知2
AB
AC
=
3
|
AB
|•|
AC
|=3BC2
,求角A,B,C的大小.
设BC=a,AC=b,AB=c
由2
AB
AC
=
3
|
AB
| |
AC
|
得2abcocA=
3
bc所以cosA=
3
2

又A∈(0,π)因此A=
π
6
3
|
AB
| |
AC
|
=3BC2得bc=
3
a
2

于是sinCsinB=
3
sin2A
=
3
4

所以sinCsin(
6
-C
)=
3
4

2sinCcosC+2
3
sin2C=
3

即sin(2C-
π
3
)=0
A=
π
6
∴0<C<
6

-
π
3
<2C-
π
3
< 
3

2C-
π
3
=0或2C-
π
3

C=
π
6
或C=
3

故A=
π
6
, B=
3
,C=
π
6
A=
π
6
, C=
3
,B=
π
6
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网