题目内容
在△ABC,已知2
•
=
|
|•|
|=3BC2,求角A,B,C的大小.
| AB |
| AC |
| 3 |
| AB |
| AC |
设BC=a,AC=b,AB=c
由2
•
=
|
| |
|得2abcocA=
bc所以cosA=
又A∈(0,π)因此A=
由
|
| |
|=3BC2得bc=
a2;
于是sinCsinB=
sin2A=
所以sinCsin(
-C)=
,
∴2sinCcosC+2
sin2C=
即sin(2C-
)=0
∵A=
∴0<C<
∴-
<2C-
<
∴2C-
=0或2C-
=π
∴C=
或C=
故A=
, B=
,C=
或A=
, C=
,B=
由2
| AB |
| AC |
| 3 |
| AB |
| AC |
| 3 |
| ||
| 2 |
又A∈(0,π)因此A=
| π |
| 6 |
| 3 |
| AB |
| AC |
| 3 |
于是sinCsinB=
| 3 |
| ||
| 4 |
所以sinCsin(
| 5π |
| 6 |
| ||
| 4 |
∴2sinCcosC+2
| 3 |
| 3 |
即sin(2C-
| π |
| 3 |
∵A=
| π |
| 6 |
| 5π |
| 6 |
∴-
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
∴2C-
| π |
| 3 |
| π |
| 3 |
∴C=
| π |
| 6 |
| 2π |
| 3 |
故A=
| π |
| 6 |
| 2π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 2π |
| 3 |
| π |
| 6 |
练习册系列答案
相关题目