题目内容
(1)证明:BC⊥AC1;
(2)求直线AB与平面A1BC所成角的正弦值.
分析:(1)由AC=4,AB=5,BC=3,知AC⊥BC,由三棱柱ABC-A1B1C1的各棱都垂直于底面,知平面A1ACC1⊥平面ABC,BC⊥平面A1ACC1,由此能证明BC⊥AC1.
(2)由AA1=AC=4,知四边形A1ACC1是正方形,故A1C⊥AC1,AC1⊥平面A1BC,所以∠ABM为AB与平面A1BC所成的角,由此能求出直线AB与平面A1BC所成角的正弦值.
(2)由AA1=AC=4,知四边形A1ACC1是正方形,故A1C⊥AC1,AC1⊥平面A1BC,所以∠ABM为AB与平面A1BC所成的角,由此能求出直线AB与平面A1BC所成角的正弦值.
解答:解:(1)∵AC=4,AB=5,BC=3,
则AC2+BC2=AB2,
∴AC⊥BC,
∵三棱柱ABC-A1B1C1的各棱都垂直于底面,
∴平面A1ACC1⊥平面ABC,BC⊥平面A1ACC1,
∵A1C?平面A1ACC1,
∴BC⊥AC1.
(2)∵AA1=AC=4,
∴四边形A1ACC1是正方形,
∴A1C⊥AC1,
∵BC⊥AC1,BC∩A1C=C,
∴AC1⊥平面A1BC,
设AC1与A1C交于点M,连接BM,
则∠ABM为AB与平面A1BC所成的角,
在Rt△ABM中,AM=2
,AB=5,sin∠ABM=
,
∴直线AB与平面A1BC所成角的正弦值为
.
则AC2+BC2=AB2,
∴AC⊥BC,
∵三棱柱ABC-A1B1C1的各棱都垂直于底面,
∴平面A1ACC1⊥平面ABC,BC⊥平面A1ACC1,
∵A1C?平面A1ACC1,
∴BC⊥AC1.
(2)∵AA1=AC=4,
∴四边形A1ACC1是正方形,
∴A1C⊥AC1,
∵BC⊥AC1,BC∩A1C=C,
∴AC1⊥平面A1BC,
设AC1与A1C交于点M,连接BM,
则∠ABM为AB与平面A1BC所成的角,
在Rt△ABM中,AM=2
| 2 |
2
| ||
| 5 |
∴直线AB与平面A1BC所成角的正弦值为
2
| ||
| 5 |
点评:本题考查直线与平面所成角的正弦值的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.
练习册系列答案
相关题目