ÌâÄ¿ÄÚÈÝ
¼Ç±íÖеĵÚÒ»ÁÐÊýa1£¬a4£¬a8£¬¡£¬¹¹³ÉÊýÁÐ{bn}£®
£¨¢ñ£©Éèb8=am£¬ÇómµÄÖµ£»
£¨¢ò£©Èôb1=1£¬¶ÔÓÚÈκÎn¡ÊN*£¬¶¼ÓÐbn£¾0£¬ÇÒ£¨n+1£©bn+12-nbn2+bn+1bn=0£®ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨¢ó£©¶ÔÓÚ£¨¢ò£©ÖеÄÊýÁÐ{bn}£¬ÈôÉϱíÖÐÿһÐеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¾ù¹¹³É¹«±ÈΪq£¨q£¾0£©µÄµÈ±ÈÊýÁУ¬ÇÒa66=
| 2 | 5 |
·ÖÎö£º£¨¢ñ£©ÓÉÌâÉèÌõ¼þ¿ÉÒÔÖªµÀ£¬m=3+4+5+6+7+8+9+1=43£®
£¨¢ò£©¸ù¾ÝÌâÒâÖª
=
£¬Òò´Ë
=
£¬
=
£¬¡£¬
=
£¬½«¸÷ʽÏà³ËµÃbn=
£®
£¨¢ó£©ÉèÉϱíÖÐÿÐеĹ«±È¶¼Îªq£¬±íÖеÚ1ÐÐÖÁµÚ9Ðй²º¬ÓÐÊýÁÐbnµÄǰ63Ï¹Êa66ÔÚ±íÖеÚ10ÐеÚÈýÁУ®ÓÉ´Ë¿ÉÇó³öÉϱíÖеÚk£¨k¡ÊN*£©ÐÐËùÓÐÏîµÄºÍs£¨k£©£®
£¨¢ò£©¸ù¾ÝÌâÒâÖª
| bn+1 |
| bn |
| n |
| n+1 |
| b2 |
| b1 |
| 1 |
| 2 |
| b3 |
| b2 |
| 2 |
| 3 |
| bn |
| bn-1 |
| n-1 |
| n |
| 1 |
| n |
£¨¢ó£©ÉèÉϱíÖÐÿÐеĹ«±È¶¼Îªq£¬±íÖеÚ1ÐÐÖÁµÚ9Ðй²º¬ÓÐÊýÁÐbnµÄǰ63Ï¹Êa66ÔÚ±íÖеÚ10ÐеÚÈýÁУ®ÓÉ´Ë¿ÉÇó³öÉϱíÖеÚk£¨k¡ÊN*£©ÐÐËùÓÐÏîµÄºÍs£¨k£©£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÒ⣬m=3+4+5+6+7+8+9+1=43£¬£¨4·Ö£©
£¨¢ò£©ÓÉ£¨n+1£©bn+12-nbn2+bn+1bn=0£¬bn£¾0£¬
Áît=
µÃt£¾0£¬ÇÒ£¨n+1£©t2+t-n=0£¨6·Ö£©
¼´£¨t+1£©[£¨n+1£©t-n]=0£¬
ËùÒÔ
=
£¨8·Ö£©
Òò´Ë
=
£¬
=
£¬¡£¬
=
½«¸÷ʽÏà³ËµÃbn=
£¨10·Ö£©
£¨¢ó£©ÉèÉϱíÖÐÿÐеĹ«±È¶¼Îªq£¬ÇÒq£¾0£®
ÒòΪ3+4+5+¡+11=63£¬£¨12·Ö£©
ËùÒÔ±íÖеÚ1ÐÐÖÁµÚ9Ðй²º¬ÓÐÊýÁÐbnµÄǰ63Ï
¹Êa66ÔÚ±íÖеÚ10ÐеÚÈýÁУ¬£¨14·Ö£©
Òò´Ëa66=b10•q2=
£®ÓÖb10=
£¬ËùÒÔq=2£®ÔòS(k)=
=
(2k+2-1)£®k¡ÊN*£¨16·Ö£©
£¨¢ò£©ÓÉ£¨n+1£©bn+12-nbn2+bn+1bn=0£¬bn£¾0£¬
Áît=
| bn+1 |
| bn |
¼´£¨t+1£©[£¨n+1£©t-n]=0£¬
ËùÒÔ
| bn+1 |
| bn |
| n |
| n+1 |
Òò´Ë
| b2 |
| b1 |
| 1 |
| 2 |
| b3 |
| b2 |
| 2 |
| 3 |
| bn |
| bn-1 |
| n-1 |
| n |
½«¸÷ʽÏà³ËµÃbn=
| 1 |
| n |
£¨¢ó£©ÉèÉϱíÖÐÿÐеĹ«±È¶¼Îªq£¬ÇÒq£¾0£®
ÒòΪ3+4+5+¡+11=63£¬£¨12·Ö£©
ËùÒÔ±íÖеÚ1ÐÐÖÁµÚ9Ðй²º¬ÓÐÊýÁÐbnµÄǰ63Ï
¹Êa66ÔÚ±íÖеÚ10ÐеÚÈýÁУ¬£¨14·Ö£©
Òò´Ëa66=b10•q2=
| 2 |
| 5 |
| 1 |
| 10 |
| bk(1-qk+2) |
| 1-q |
| 1 |
| k |
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿