题目内容
(1)计算:C33+C43+C53+…+C103(2)证明:Ank+kAnk-1=An+1k.
分析:(1)先把C33化为C44,再根据组合数的性质,Cnm+Cnm-1=Cn+1m,逐个化简,即可求出C33+C43+C53+…+C103
的值.
(2)把左右两边分别用排列数公式,Anm=
化简,再判断化简后得式子相等即可.
的值.
(2)把左右两边分别用排列数公式,Anm=
| n! |
| (n-m)! |
解答:解:(1)∵Cmn+Cm-1n=Cmn+1,
∴原式=C44+C43+C53+…+C103
=C54+C53+C63+…+C103
=C64+C63+C73+…+C103
=…
=C104+C103
=C114
=330
(2)证明:∵
=
∴左边=
+k
=
=
=An+1k=右边
∴原式=C44+C43+C53+…+C103
=C54+C53+C63+…+C103
=C64+C63+C73+…+C103
=…
=C104+C103
=C114
=330
(2)证明:∵
| A | n m |
| n! |
| (n-m)! |
∴左边=
| n! |
| (n-k)! |
| n! |
| (n-k+1)! |
=
| n![(n-k+1)+k] |
| (n-k+1)! |
=
| (n+1)! |
| (n-k+1)! |
=An+1k=右边
点评:本题考查了排列数公式和组合数性质,做题时应认真计算,避免出错.
练习册系列答案
相关题目