题目内容

16.已知函数f(x)及其导数f′(x),若存在x0,使得f(x0)=f′(x0),则称x0是f(x)的一个“巧值点”.下列函数有“巧值点”的是①③④(填序号)
①f(x)=x2 ②$f(x)=\frac{1}{e^x}$   ③f(x)=lnx   ④$f(x)=x+\frac{1}{x}$.

分析 根据“巧值点”的定义,对①②③④五个命题逐一判断即可得到答案.

解答 解:①中的函数f(x)=x2,f′(x)=2x.要使f(x)=f′(x),则x2=2x,解得x=0或2,可见函数有巧值点;
对于②中的函数,要使f(x)=f′(x),则e-x=-e-x,由对任意的x,有e-x>0,可知方程无解,原函数没有巧值点;
对于③中的函数,要使f(x)=f′(x),则lnx=$\frac{1}{x}$,

由函数f(x)=lnx与y=$\frac{1}{x}$的图象知,它们有交点,因此方程有解,原函数有巧值点;
对于④中的函数,要使f(x)=f′(x),则x+$\frac{1}{x}$=1-$\frac{1}{{x}^{2}}$,即x3-x2+x+1=0,
设函数g(x)=x3-x2+x+1,g′(x)=3x2+2x+1>0且g(-1)<0,g(0)>0,
显然函数g(x)在(-1,0)上有零点,原函数有巧值点.
故有“巧值点”的函数为①③④.
故答案为:①③④

点评 本题考查命题的真假判断与应用,考查导数的应用,突出等价转化思想与数形结合思想的考查,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网