题目内容

已知:x1,x2(x1<x2)是方程x2-6x+5=0的两根,且yn=
xn+1
xn
xn+2=(5+
1
yn
)xn+1
.n∈N*
(1)求y1,y2,y3的值;
(2)设zn=ynyn+1,求证:
n
i=1
zi≥26n

(3)求证:对?n∈[2,+∞)有|y2n-yn|<
1
625
1
26n-2
分析:(1)先根据方程的根求出y1=
x2
x1
=5
,再根据yn的表达式和xn+2关于xn+1表达式,分别取n=1、2、3即可求出;
(2)根据xn、yn各项为正的特征,求出z1=y1y2=26,再根据zn的表达式及不等式的性质可得zn>26(n≥2),最后代入
n
i=1
zi
,命题得证;
(3)求出|y2-y1|=
1
25
26
625
,再通过yn+1关于yn的表达式,证出|yn+1-yn|≤
1
26
|yn-yn-1|
,利用数列的递推特性进一步证出|yn+1-yn|≤
1
25
1
26n-1
,最后用绝对值不等式的性质将|y2n-yn|分解为不小于它本身的和:|yn+1-yn|+…+|y2n-1-y2n-2|+|y2n-y2n-1|的形式,得出等比数列求和表达式,再将所得结果适当放大,使命题得证.
解答:解:(1)解方程x2-6x+5=0 得x1=1,x2=5,---------------------------------------------1分
y1=
x2
x1
=5
,------------------------------------------------------------------------------2分 x3=(5+
1
y1
)x2=26

y2=
x3
x2
=
26
5
,--------------------------------------------------------------------------3分 x4=(5+
1
y2
)x3=135

y3=
x4
x3
=
135
26
--------------------------------------------4分
(2)由xn+2=(5+
1
yn
)xn+1
xn+2
xn+1
=5+
1
yn
yn+1=5+
1
yn
?yn+1yn=5yn+1----------------------6分
当n≥2 时yn>5,于是z1=y1y2=26,zn=ynyn+1=5yn+1>26 (n≥2 )
n
i=1
zi=z1+z2+…+zn≥26n
--------------------------------------------------------------------9分
(3)当n≥2 时,有|yn+1-yn|=|5+
1
yn
-(5+
1
yn-1
)|=|
yn-yn-1
ynyn-1
|≤
1
26
|yn-yn-1|
1
262
|yn-1-yn-2|
≤…≤
1
26n-1
|y2-y1|
=
1
25
1
26n-1
----------------------------------------12分
∵|y2n-yn|=|y2n-y2n-1+y2n-1-y2n-2+y2n-2-…+yn+1-yn|
∴|y2n-yn|≤|yn+1-yn|+…+|y2n-1-y2n-2|+|y2n-y2n-1|
1
25
[
1
26n-1
+…+
1
262n-3
+
1
262n-2
]
=
1
25
1
26n-1
(1-
1
26n
)
1-
1
26
26
625
1
26n-1
=
1
625
1
26n-2

∴对?n∈N*|y2n-yn|<
1
625
1
26n-2
(n∈N*)----------------------------------------------14分
点评:把握数列的递推关系是解决前两个问题的关键,第三问用到数列递推在不等式中的应用,证明不等式用到绝对值不等式的性质以及不等式放缩的技巧,再与数列的求和相结合,是数列与不等式两个知识点的完美交汇.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网