题目内容
已知:x1,x2(x1<x2)是方程x2-6x+5=0的两根,且yn=| xn+1 |
| xn |
| 1 |
| yn |
(1)求y1,y2,y3的值;
(2)设zn=ynyn+1,求证:
| n |
| i=1 |
(3)求证:对?n∈[2,+∞)有|y2n-yn|<
| 1 |
| 625 |
| 1 |
| 26n-2 |
分析:(1)先根据方程的根求出y1=
=5,再根据yn的表达式和xn+2关于xn+1表达式,分别取n=1、2、3即可求出;
(2)根据xn、yn各项为正的特征,求出z1=y1y2=26,再根据zn的表达式及不等式的性质可得zn>26(n≥2),最后代入
zi,命题得证;
(3)求出|y2-y1|=
<
,再通过yn+1关于yn的表达式,证出|yn+1-yn|≤
|yn-yn-1|,利用数列的递推特性进一步证出|yn+1-yn|≤
•
,最后用绝对值不等式的性质将|y2n-yn|分解为不小于它本身的和:|yn+1-yn|+…+|y2n-1-y2n-2|+|y2n-y2n-1|的形式,得出等比数列求和表达式,再将所得结果适当放大,使命题得证.
| x2 |
| x1 |
(2)根据xn、yn各项为正的特征,求出z1=y1y2=26,再根据zn的表达式及不等式的性质可得zn>26(n≥2),最后代入
| n |
| i=1 |
(3)求出|y2-y1|=
| 1 |
| 25 |
| 26 |
| 625 |
| 1 |
| 26 |
| 1 |
| 25 |
| 1 |
| 26n-1 |
解答:解:(1)解方程x2-6x+5=0 得x1=1,x2=5,---------------------------------------------1分
∴y1=
=5,------------------------------------------------------------------------------2分 x3=(5+
)x2=26,
∴y2=
=
,--------------------------------------------------------------------------3分 x4=(5+
)x3=135,
∴y3=
=
--------------------------------------------4分
(2)由xn+2=(5+
)xn+1 得
=5+
即yn+1=5+
?yn+1yn=5yn+1----------------------6分
当n≥2 时yn>5,于是z1=y1y2=26,zn=ynyn+1=5yn+1>26 (n≥2 )
∴
zi=z1+z2+…+zn≥26n--------------------------------------------------------------------9分
(3)当n≥2 时,有|yn+1-yn|=|5+
-(5+
)|=|
|≤
|yn-yn-1| ≤
|yn-1-yn-2| ≤…≤
|y2-y1|=
•
----------------------------------------12分
∵|y2n-yn|=|y2n-y2n-1+y2n-1-y2n-2+y2n-2-…+yn+1-yn|
∴|y2n-yn|≤|yn+1-yn|+…+|y2n-1-y2n-2|+|y2n-y2n-1|≤
[
+…+
+
]=
•
<
•
=
•
∴对?n∈N* 有|y2n-yn|<
•
(n∈N*)----------------------------------------------14分
∴y1=
| x2 |
| x1 |
| 1 |
| y1 |
∴y2=
| x3 |
| x2 |
| 26 |
| 5 |
| 1 |
| y2 |
∴y3=
| x4 |
| x3 |
| 135 |
| 26 |
(2)由xn+2=(5+
| 1 |
| yn |
| xn+2 |
| xn+1 |
| 1 |
| yn |
| 1 |
| yn |
当n≥2 时yn>5,于是z1=y1y2=26,zn=ynyn+1=5yn+1>26 (n≥2 )
∴
| n |
| i=1 |
(3)当n≥2 时,有|yn+1-yn|=|5+
| 1 |
| yn |
| 1 |
| yn-1 |
| yn-yn-1 |
| ynyn-1 |
| 1 |
| 26 |
| 1 |
| 262 |
| 1 |
| 26n-1 |
| 1 |
| 25 |
| 1 |
| 26n-1 |
∵|y2n-yn|=|y2n-y2n-1+y2n-1-y2n-2+y2n-2-…+yn+1-yn|
∴|y2n-yn|≤|yn+1-yn|+…+|y2n-1-y2n-2|+|y2n-y2n-1|≤
| 1 |
| 25 |
| 1 |
| 26n-1 |
| 1 |
| 262n-3 |
| 1 |
| 262n-2 |
| 1 |
| 25 |
| ||||
1-
|
| 26 |
| 625 |
| 1 |
| 26n-1 |
| 1 |
| 625 |
| 1 |
| 26n-2 |
∴对?n∈N* 有|y2n-yn|<
| 1 |
| 625 |
| 1 |
| 26n-2 |
点评:把握数列的递推关系是解决前两个问题的关键,第三问用到数列递推在不等式中的应用,证明不等式用到绝对值不等式的性质以及不等式放缩的技巧,再与数列的求和相结合,是数列与不等式两个知识点的完美交汇.
练习册系列答案
相关题目