题目内容
17.已知数列{an}的前n项和为Sn,且对任意正整数n都有an是n与Sn的等差中项,bn=an+1.(1)求证:数列{bn}是等比数列,并求出其通项bn;
(2)若数列{Cn}满足Cn=$\frac{1}{lo{g}_{2}{b}_{n}}$且数列{C${\;}_{n}^{2}$}的前n项和为Tn,证明Tn<2.
分析 (Ⅰ)由an是n与Sn的等差中项,2an=n+Sn,当n≥2,2an-1=n-1+Sn-1,相减得:2an-2an-1=1+an,化简整理得:an+1=2(an-1+1),bn=2bn-1,b1=2,数列{bn}是等比数列是以2为首项,2为公比的等比数列;
(Ⅱ)数列{Cn}满足Cn=$\frac{1}{n}$,C${\;}_{n}^{2}$=$\frac{1}{{n}^{2}}$,分类当n=1,${C}_{1}^{2}$=1<2命题成立,当n≥2时,${1}^{2}+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}$<1+$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{(n-1)×n}$,采用裂项法,求得Tn=2-$\frac{1}{n}$<2,命题成立.
解答 证明:(Ⅰ)∵an是n与的等差中项,
2an=n+Sn,
∴2an-1=n-1+Sn-1,(n≥2),
两式相减得:2an-2an-1=1+an,
an=2an-1+1,(n≥2),
∴an+1=2(an-1+1),
∴bn=2bn-1,
$\frac{{b}_{n}}{{b}_{n-1}}$=2,当n=1,2a1=1+S1,
∴a1=1,b1=2,
∴数列{bn}是等比数列是以2为首项,2为公比的等比数列,
bn=2n,
(Ⅱ)数列{Cn}满足Cn=$\frac{1}{lo{g}_{2}{b}_{n}}$=$\frac{1}{n}$,
∴C${\;}_{n}^{2}$=$\frac{1}{{n}^{2}}$,
当n=1时,T1=${C}_{1}^{2}$=1<2,命题成立,
当n≥2,${T}_{n}={C}_{1}^{2}+{C}_{2}^{2}+{C}_{3}^{2}+…+{C}_{n}^{2}$,
${1}^{2}+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}$<1+$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{(n-1)×n}$,
=1+1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n-1}-\frac{1}{n}$,
=2-$\frac{1}{n}$<2,命题成立.
点评 本题考查求等比数列通项公式,及采用裂项法求数列的前n项和,属于中档题.
| A. | $\frac{2\sqrt{5}}{5}$ | B. | $\frac{4\sqrt{5}}{5}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | 1 |
| A. | (-1,0)∪(0,1) | B. | (-1,0) | C. | (0,1) | D. | (-1,1) |