题目内容

已知双曲线的一条渐近线方程是x-2y=0,且过点P(4,3),求双曲线的标准方程.

解:根据题意,双曲线的一条渐近线方程为x-2y=0,
设双曲线方程为-y2=λ(λ≠0),
∵双曲线过点P(4,3),
-32=λ,即λ=-5.
∴所求双曲线方程为-y2=-5,
即:-=1.
分析:根据题意,双曲线的一条渐近线方程为x-2y=0,可设双曲线方程为-y2=λ(λ≠0),又由双曲线过点P(4,3),将点P的坐标代入可得λ的值,进而可得答案.
点评:本题考查双曲线的标准方程的求法,需要学生熟练掌握已知渐近线方程时,如何设出双曲线的标准方程.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网