题目内容
在(1,)处的切线方程为
已知两条直线,平行,则等于_________.
已知集合A={x|log2≤1},B={x|x2﹣2x+1﹣k2≥0}.
(1)求集合A;
(2)若A∩B≠∅,求实数k的取值范围.
已知函数当时有极值,且在处的切线的斜率为.
(1)求函数的解析式;
(2)求函数在区间上的最大值与最小值;
(3)若过点可作曲线的三条切线,求实数的取值范围.
若“”是“”的充分不必要条件,则实数a的取值范围是 .
“a=b”是“”的 .(从“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中选择适当的一种填空)
(用数字作答)从5本不同的故事书和4本不同的数学书中选出4本,送给4位同学,每人1本,问:
(1)如果故事书和数学书各选2本,共有多少种不同的送法?
(2)如果故事书甲和数学书乙必须送出,共有多少种不同的送法?
(3)如果选出的4本书中至少有3本故事书,共有多少种不同的送法?
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修,可供利用的旧墙足够长),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图2所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m, 设利用旧墙的长度为(单位:),修建此矩形场地围墙的总费用为(单位:元).
(Ⅰ)将表示为的函数;
(Ⅱ)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
设等差数列的前n项和为 ,且则( )
A. 63 B.45 C.36 D.27