题目内容

已知{an}是递增数列,且对任意的n∈N*都有an=n2+2
3
sinθ•n(θ∈[0,2π])恒成立,则角θ的取值范围是______.
∵{an}是递增数列,且对任意的n∈N*都有an=n2+2
3
sinθ•n(θ∈[0,2π])恒成立,
∴an+1≥an,对任意的n∈N*都成立,
∴(n+1)2+2
3
sinθ•(n+1)-n2-2
3
sinθ•n,
∴2n+1+2
3
sinθ≥0,转化为2
3
sinθ≥-2n-1,恒成立,因为n≥1,n∈N*,
∴-2n-1≥-3,
∴2
3
sinθ≥-3,解得sinθ≥-
3
2
,∵θ∈[0,2π]
解得0≤θ≤
3
,或
3
≤θ≤2π,
故答案为:[0,
3
]∪[
3
,2π];
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网