题目内容
已知等差数列{an}前三项的和为-3,前三项的积为8.
(1)若a2,a3,a1成等比数列,求数列{|an|}的前n项和.
(2)若a2,a3,a1不成等比数列,求数列{
}的前n项和.
(1)若a2,a3,a1成等比数列,求数列{|an|}的前n项和.
(2)若a2,a3,a1不成等比数列,求数列{
| 1 |
| anan+1 |
(1)设等差数列{an}的公差为d,
由题意得
解得
或
.
∴an=2-3(n-1)=-3n+5或an=-4+3(n-1)=3n-7.
当an=3n-7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.
设数列{|an|}的前n项和为Sn.
∴当n=1,2时,|an|=7-3n,Sn=
=-
n2+
n;
当n≥3时,|an|=3n-7,
Sn=-a1-a2+a3+a4+…+an
=5+
=
n2-
n+10,
综上可得:|an|=|7-3n|=
Sn=
(2)当an=-3n+5时,a2,a3,a1分别为-1,-4,2,不成等比数列.
=
=
(
-
),
∴Tn=
[(-
-1)+(1-
)+…+(
-
)]
=
[-
-
]
=
.
由题意得
|
|
|
∴an=2-3(n-1)=-3n+5或an=-4+3(n-1)=3n-7.
当an=3n-7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.
设数列{|an|}的前n项和为Sn.
∴当n=1,2时,|an|=7-3n,Sn=
| n(4+7-3n) |
| 2 |
| 3 |
| 2 |
| 11 |
| 2 |
当n≥3时,|an|=3n-7,
Sn=-a1-a2+a3+a4+…+an
=5+
| (n-2)(2+3n-7) |
| 2 |
=
| 3 |
| 2 |
| 11 |
| 2 |
综上可得:|an|=|7-3n|=
|
Sn=
|
(2)当an=-3n+5时,a2,a3,a1分别为-1,-4,2,不成等比数列.
| 1 |
| anan+1 |
| 1 |
| (3n-5)(3n-2) |
| 1 |
| 3 |
| 1 |
| 3n-5 |
| 1 |
| 3n-2 |
∴Tn=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3n-5 |
| 1 |
| 3n-2 |
=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3n-2 |
=
| n |
| -6n+4 |
练习册系列答案
相关题目