题目内容

已知某海滨浴场海浪的高度y(米)是时间t的(0≤t≤24,单位:小时)函数,记作:y=f(t),下表是某日各时的浪高数据:
t(时)3691215182124
y(米)1.51.00.51.01.51.00.50.991.5
经长期观察,y=f(t)的曲线,可以近似地看成函数y=Acosωt+b的图象.
(1)根据以上数据,求出函数y=f(t)近似表达式;
(2)依据规定,当海浪高度高于0.75米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动?
【答案】分析:(1)设函数f(t)=Asin(ωt+φ)+k(A>0,ω>0),从表格中找出同(6,0.5)和(12,1.5)是同一个周期内的最小值点和最大值点,由此算出函数的周期T=12并得到ω=,算出A=和k=1,最后根据x=6时函数有最小值0.5解出φ=,从而得到函数y=f(t)近似表达式;
(2)根据(1)的解析式,解不等式f(t)>0.75,可得12k-4<t<12k+4(k∈z),取k=0、1、2,将得到的范围与[8,20]对照,可得从8点到16点共8小时的时间可供冲浪者进行运动.
解答:解:(1)设函数f(t)=Asin(ωt+φ)+k(A>0,ω>0)
∵同一周期内,当t=12时ymax=1.5,当t=6时ymin=0.5,
∴函数的周期T=2(12-6)=12,得ω==,A=(1.5-0.5)=且k=(1.5+0.5)=1
可得f(t)=sin(t+φ)+1,
再将(6,0.5)代入,得0.5=sin(×6+φ)+1,解之得φ=
∴函数近似表达式为f(t)=sin(t+)+1,即
(2)由题意,可得,即
解之得.即12k-4<t<12k+4(k∈z),
∴在同一天内取k=0、1、2得0<t<4,8<t<16,20<t≤24
∴在规定时间上午8:00时至晚上20:00时之间,从8点到16点共8小时的时间可供冲浪者进行运动.
点评:本题给出实际应用问题,求函数的近似表达式并求能供冲浪运动的时间段.着重考查了三角函数的解析式求法、三角函数在实际问题中的应用等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网