题目内容

已知函数f(x)=x2+ax+6.
(1)当a=5时,解不等式f(x)<0;
(2)若不等式f(x)>0的解集为R,求实数a的取值范围.

解:(1)∵当a=5时,不等式f(x)<0即
x2+5x+6<0,
∴(x+2)(x+3)<0,
∴-3<x<-2.
∴不等式f(x)<0的解集为{x|-3<x<-2}
(2)不等式f(x)>0的解集为R,
∴x的一元二次不等式x2+ax+6>0的解集为R,
∴△=a2-4×6<0?-2<a<2
∴实数a的取值范围是(-2,2
分析:(1)首先把一元二次不等式变为x2+5x+6<0,然后运用因式分解即可解得不等式的解集;
(2)要使一元二次不等式x2+ax+6>0的解集为R,只需△<0,求出实数a的取值范围即可.
点评:本题主要考查一元二次不等式,以及恒成立问题,同时考查了转化的思想,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网