题目内容
如图2-2-8,在等腰三角形ABC中,AB =AC,D是AC中点,DE平分∠ADB,交AB于E,过A、D、E的圆交BD于N.求证:BN =2AE.![]()
图2-2-8
思路分析:要证BN =2AE,由已知有AB=AC =2AD,所以只需证
=
.而又因为AE =NE,所以只需证
=
,这可由△BNE∽△BAD证得.
证明:连结EN,∵四边形AEND是圆内接四边形,?
∴∠BNE =∠A.?
又∵∠ABD =∠EBN,∴△BNE∽△BAD.?
∴
=
.?
∵AB =AC,AC =2AD,∴AB =2AD.?
∴BN =2EN.?
又∵∠ADE =∠NDE,∴AE =EN,?
∴AE =EN,∴BN =2AE.
练习册系列答案
相关题目