题目内容
15、设xn={1,2…,n}(n∈N+),对xn的任意非空子集A,定义f(A)为A中的最小元素,当A取遍xn的所有非空子集时,对应的f(A)的和为Sn,则:①S3=
11
,②Sn=2n+1-n-2
.分析:由题意得:在所有非空子集中每个元素出现2n-1次.即有2n-1个子集含1,有2n-2个子集不含1含2,有2n-3子集不含1,2,含3…有2k-1个子集不含1,2,3…k-1,而含k.
所以Sn=2n-1×1+2n-2×2+…+21×(n-1)+n,进而利用错位相减法求出其和.
所以Sn=2n-1×1+2n-2×2+…+21×(n-1)+n,进而利用错位相减法求出其和.
解答:解:由题意得:在所有非空子集中每个元素出现2n-1次.
故有2n-1个子集含1,有2n-2个子集不含1含2,有2n-3子集不含1,2,含3…有2k-1个子集不含1,2,3…k-1,而含k.
所以Sn=2n-1×1+2n-2×2+…+21×(n-1)+n
Sn=n•1+(n-1)•2+…+2•2n-2+1•2n-1…①
所以2Sn=n•2+(n-1)•4+…+2•2n-1+1•2n…②
所以①-②可得-Sn=n-(2+4+…+2n-1+2n)
所以Sn=2n+1-n-2
所以S3=11.
故答案为①S3=11,②Sn=2n+1-n-2.
故有2n-1个子集含1,有2n-2个子集不含1含2,有2n-3子集不含1,2,含3…有2k-1个子集不含1,2,3…k-1,而含k.
所以Sn=2n-1×1+2n-2×2+…+21×(n-1)+n
Sn=n•1+(n-1)•2+…+2•2n-2+1•2n-1…①
所以2Sn=n•2+(n-1)•4+…+2•2n-1+1•2n…②
所以①-②可得-Sn=n-(2+4+…+2n-1+2n)
所以Sn=2n+1-n-2
所以S3=11.
故答案为①S3=11,②Sn=2n+1-n-2.
点评:解决此类问题的关键是读懂并且弄清题意,结合数列求和的方法求其和即可.
练习册系列答案
相关题目
设Xn={1,2,3…n}(n∈N*),对Xn的任意非空子集A,定义f(A)为A中的最大元素,当A取遍Xn的所有非空子集时,对应的f(A)的和为Sn,则S5=( )
| A、104 | B、120 | C、124 | D、129 |