ÌâÄ¿ÄÚÈÝ
12£®ÒÔÆ½ÃæÖ±½Ç×ø±êϵԵãOΪ¼«µã£¬ÒÔxÖá·Ç¸º°ëÖáΪ¼«ÖᣬÒÔÆ½ÃæÖ±½Ç×ø±êϵµÄ³¤¶Èµ¥Î»Îª³¤¶Èµ¥Î»½¨Á¢¼«×ø±êϵ£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2-3t}\\{y=-1+2t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È=4cos¦È£¨¢ñ£© ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£© ÉèÖ±ÏßlÓëÇúÏßCÏཻÓÚA£¬BÁ½µã£¬Çó|AB|£®
·ÖÎö £¨¢ñ£©Ö±½Ó°Ñ¼«×ø±ê·½³Ìת»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©°Ñ²ÎÊý·½³Ì´úÈëÅ×ÎïÏߵõ½¹ØÓÚtµÄÒ»Ôª¶þ´Î·½³Ì£¬½øÒ»²½ÀûÓøùºÍϵÊýµÄ¹ØÏµÇó³ö½á¹û£®
½â´ð ½â£º£¨¢ñ£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È=4cos¦È£¬
ת»¯Îª£º£¨¦Ñsin¦È£©2=4¦Ñcos¦È£¬
½øÒ»²½×ª»¯ÎªÖ±½Ç×ø±ê·½³ÌΪ£ºy2=4x
£¨¢ò£©°ÑÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2-3t}\\{y=-1+2t}\end{array}\right.$£¨tΪ²ÎÊý£©»¯Îª£º2x+3y=1£¬
´úÈëy2=4xµÃy2+6y-2=0£»
ÉèA¡¢BµÄ×Ý×ø±ê·Ö±ðΪy1¡¢y2£»
Ôòy1y2=-2£¬y1+y2-6£»
Ôò|y1-y2|=$\sqrt{36-4¡Á£¨-2£©}$=2$\sqrt{11}$£»
|AB|=$\sqrt{1+£¨-\frac{3}{2}£©^{2}}$¡Á|y1-y2|=$\frac{\sqrt{13}}{2}$¡Á2$\sqrt{11}$=$\sqrt{143}$£¬
ËùÒÔ|AB|=$\sqrt{143}$£®
µãÆÀ ±¾Ì⿼²éµÄ֪ʶҪµã£º¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬Ò»Ôª¶þ´Î·½³Ì¸ùºÍϵÊýµÄ¹ØÏµµÄÓ¦Óã¬Ö÷Òª¿¼²éѧÉúµÄÓ¦ÓÃÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿