题目内容
若关于x的不等式|x+2|+|x-3|≤|a-1|存在实数解,则实数a的取值范围是.______.
令f(x)=|x+2|+|x-3|,
则令f(x)=|x+2|+|x-3|≥|x+2+3-x|=5,
依题意,不等式|x+2|+|x-3|≤|a-1|存在实数解?|a-1|≥f(x)存在实数解?|a-1|≥f(x)min=5,
∴a-1≥5或a-1≤-5,
∴a≥6或a≤-4.
∴实数a的取值范围是(-∞,-4]∪[6,+∞).
故答案为:(-∞,-4]∪[6,+∞).
则令f(x)=|x+2|+|x-3|≥|x+2+3-x|=5,
依题意,不等式|x+2|+|x-3|≤|a-1|存在实数解?|a-1|≥f(x)存在实数解?|a-1|≥f(x)min=5,
∴a-1≥5或a-1≤-5,
∴a≥6或a≤-4.
∴实数a的取值范围是(-∞,-4]∪[6,+∞).
故答案为:(-∞,-4]∪[6,+∞).
练习册系列答案
相关题目