题目内容

15.在△ABC中,M为边BC上的任意一点,点N在线段AM上,且满足$\overrightarrow{AN}=\frac{1}{3}\overrightarrow{NM}$,若$\overrightarrow{AN}=λ\overrightarrow{AB}+μ\overrightarrow{AC}({λ,μ∈R})$,则λ+μ的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

分析 设$\overrightarrow{BM}$=t$\overrightarrow{BC}$,(0≤t≤1),$\overrightarrow{AN}$用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示出来,即可找到λ和μ的关系,最终得到答案.

解答 解:$\overrightarrow{BM}$=t$\overrightarrow{BC}$,(0≤t≤1),$\overrightarrow{AN}=\frac{1}{3}\overrightarrow{NM}$,
∴$\overrightarrow{AN}$=$\frac{1}{4}$$\overrightarrow{AM}$=$\frac{1}{4}$($\overrightarrow{AB}$+$\overrightarrow{BM}$)=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{t}{4}$$\overrightarrow{BC}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{t}{4}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{1-t}{4}$$\overrightarrow{AB}$+$\frac{t}{4}$$\overrightarrow{AC}$,
∵$\overrightarrow{AN}=λ\overrightarrow{AB}+μ\overrightarrow{AC}({λ,μ∈R})$,
∴λ+μ=$\frac{1-t}{4}$+$\frac{t}{4}$=$\frac{1}{4}$,
故选:A

点评 本题主要考查了平面向量的基本定理,即平面内任一向量都可由两不共线的向量唯一表示出来.属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网