题目内容
【题目】
购买某种保险,每个投保人每年度向保险公司交纳保费
元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为
。
(Ⅰ)求一投保人在一年度内出险的概率
;
(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)。
【答案】(Ⅰ)![]()
(Ⅱ)15元
【解析】
各投保人是否出险互相独立,且出险的概率都是
,记投保的10 000人中出险的人数为
,
则
。
(Ⅰ)记
表示事件:保险公司为该险种至少支付10 000元赔偿金,则
发生当且仅当
, 2分
![]()
![]()
,
又
,
故
。························································································ 5分
(Ⅱ)该险种总收入为
元,支出是赔偿金总额与成本的和。
支出
,
盈利
,
盈利的期望为
,······································· 9分
由
知,
,
![]()
。
![]()
![]()
![]()
(元)。
故每位投保人应交纳的最低保费为15元。····················································· 12分
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:
月份 | 1 | 2 | 3 | 4 | 5 |
违章驾驶员人数 | 120 | 105 | 100 | 90 | 85 |
(1)请利用所给数据求违章人数y与月份之间的回归直线方程
+![]()
(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;
(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2
列联表:
不礼让斑马线 | 礼让斑马线 | 合计 | |
驾龄不超过1年 | 22 | 8 | 30 |
驾龄1年以上 | 8 | 12 | 20 |
合计 | 30 | 20 | 50 |
能否据此判断有97.5
的把握认为“礼让斑马线”行为与驾龄有关?
参考公式及数据:
,
.
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)