题目内容
已知锐角三角形ABC中,sin(A+B)=
,sin(A-B)=
.
(I)求
的值;
(II)求tanB的值.
| 3 |
| 5 |
| 1 |
| 5 |
(I)求
| tanA |
| tanB |
(II)求tanB的值.
(I)∵sin(A+B)=sinAcosB+cosAsinB=
①
sin(A-B)=sinAcosB-cosAsinB=
②
①+②得:2sinAcosB=
,∴sinAcosB=
③cosAsinB=
④
③/④得:tanA•cotB=2,即
=2
(II)∵△ABC是锐角三角形,
又A+B=π-C,0<C<
,∴
<A+B<π,sin(A+B)=
∴tan(A+B)=-
,即
=-
由(1)tanA=2tanB,∴
=-
即2tan2B-4tanB-1=0,tanB=
∵B是锐角,
∴tanB=1+
| 3 |
| 5 |
sin(A-B)=sinAcosB-cosAsinB=
| 1 |
| 5 |
①+②得:2sinAcosB=
| 4 |
| 5 |
| 2 |
| 5 |
| 1 |
| 5 |
③/④得:tanA•cotB=2,即
| tanA |
| tanB |
(II)∵△ABC是锐角三角形,
又A+B=π-C,0<C<
| π |
| 2 |
| π |
| 2 |
| 3 |
| 5 |
∴tan(A+B)=-
| 3 |
| 4 |
| tanA+tanB |
| 1-tanAtanB |
| 3 |
| 4 |
由(1)tanA=2tanB,∴
| 3tanB |
| 1-2tan2B |
| 3 |
| 4 |
即2tan2B-4tanB-1=0,tanB=
4±2
| ||
| 4 |
∵B是锐角,
∴tanB=1+
| ||
| 2 |
练习册系列答案
相关题目